

Shockwave Biology

Pearline Teo, Clinical Research Manager

Agenda

- 1. What is a shockwave
- 2. Shockwave effects on
 - Vascular Endothelium
 - Stem cells
 - Nerve cells
 - Immune cells
- 3. Clinical indications

SHOCKWAVES

A Typical Shockwave:

Shockwaves are very short pressure pulses/ acoustic waves, with Fast rise time: 10-100 ns High over-pressure: 150MPa for lithotripsy; 5-20MPa for Li-ESWT Negative pressure phase

ISMST冲击波物理学基础 https://www.shockwavetherapy.org/about-eswt/physical-principles-of-eswt/

Energy Flux Density

Energy Flux Density (EFD) is the energy related to the pressure pulse **passing through a point** at coordinate (x, y, z).

The measured pressure pulse p(t) is squared and integrated over time. The area under the squared pressure curve corresponds to Energy Flux Density:

Shockwave therapies history

Low-intensity Shockwaves for Tissue Healing Mechanism: cell activation and growth factor release

Shockwave energy

Growth factors

Angiogenesis

ESWT activates multiple cell types

1. Vascular Healing & Angiogenesis

Shockwaves heal and regenerate endothelium

Shockwaves stimulate VEGF production

Very low energies (0.02 mJ/mm²) can activate angiogenesis

500 SWs at different ED were applied to HUVEC cells. VEGF and Flt-1 mRNA were analyzed 24h after treatment.

Shockwaves stimulate VEGF production in vivo

500SW @ 0.12mJ/mm² delivered to right Achilles tendon near insertion site at d0 (fluoroscopic verification; NZ white rabbit). Tendons were dissected and examined at different time points.

SWT: Tendon neovascularization

500SW @ 0.12mJ/mm² delivered to right Achilles tendon near insertion site at d0 (fluoroscopic verification; NZ white rabbit). Tendons were dissected and examined at different time points.

SWT: Functional angiogenesis

A section of the left femoral artery was ligated and excised (C57/BL6 mice). 300SW @ 0.1mJ/mm² delivered to injury site immediately after surgery. Blood flow was measured by laser Doppler. Necrosis score was assigned at 14d and 28d. 0 – no necrosis; 1 – skin necrosis; 2 – below ankle amputation; 3 – above ankle amputation.

Dornier MedTech

Holfeld et al. PLoS One. 2014; 9(8): e103982.

13

2. Stem cell recruitment and activation

Shockwaves recruit and activate stem cells

Shockwaves recruit stem cells

SW recruit stem cells to tissue

Healthy nude rats were treated with SW @ 0.05 mJ/mm² (Dornier Biotripter, focused on adductor muscle). 24hr after SWT, the muscle was harvested and SDF-1 expression was quantified by rtPCR.

ed with SW @ 0.05 mJ/mm²Healthy nude rats were treated with SW @ 0.05 mJ/mm² (Dornier
Biotripter, focused on adductor muscle). 24hr after SWT, 10⁶ human
endothelial progenitor cells were injected i.v. Muscle harvest and
histology was performed 24hr after.

Number of CM-Dil+ EPC (% of control)

Dornier MedTech

Aicher et al. Circulation. 2006 Dec 19;114(25):2823-30.

Shockwaves stimulate stem cell proliferation

C3H10T1/2 mouse mesenchymal stem cells, 100 SW at each energy level

Weihs et al. J Biol Chem. 2014 Sep 26;289(39):27090-104

Shockwaves stimulate nerve repair

SW restores Erectile Function after Nerve Injury

Sprague Dawley rats underwent bilateral cavernosal nerve crush injury and suture ligation of the internal pudendal bundle, then treated with 300 SW @ 0.06 mJ/mm² (low dose), or 1000 SW @ 0.06 mJ/mm² (high dose), from 48hr after surgery. Intracavernous pressure (ICP) test was used to evaluate erectile function 5 weeks after injury.

Li et al. J Sex Med. 2016 Jan;13(1):22-32.

18

SW \rightarrow Nerve Growth signals

Sprague Dawley rats underwent bilateral cavernosal nerve crush injury, then treated with 500 SW @ 0.06 mJ/ mm², twice/week, from 48hr after surgery. Penile BDNF expression was quantified by rtPCR, 3, 10, 20 or 26 days after surgery.

SW maintains number of nNOS+ nerves

Sprague Dawley rats underwent bilateral cavernosal nerve crush injury and suture ligation of the internal pudendal bundle, then treated with 300 SW @ 0.06 mJ/mm² (low dose), or 1000 SW @ 0.06 mJ/mm² (high dose), from 48hr after surgery. nNOS expression was quantified by IF (Image-Plus 5.1).

Wang et al. Int J Mol Sci. 2017 Feb 16;18(2). pii: E433 Li et al. J Sex Med. 2016 Jan;13(1):22-32.

Dornier MedTech

Shockwaves reduce inflammation

"Wound-healing" vs "Inflammatory" Macrophages

SW enhances "wound-healing" phenotype

In vitro macrophages were polarized into the M1 (LPS+IFN-g) or M2 (IL-4) phenotype, and exposed to 400 SW @ 0.03 mJ/mm². Cytokines released into the supernatant were quantified by ELISA.

Sukubo et al. Int J Surg. 2015 Dec;24(Pt B):124-30.

Increased inflammatory signals in Tendinopathy

Increased MMP-1, MMP-2, MMP-13 and IL-6 in diseased Achilles tendons

Human diseased Achilles tendon and normal flexor hallucis longus tendon were surgically obtained. Tenocytes were cultured for 10-14 days, then trypsinized and re-plated (no SW exposure). Media was collected 72h after, and cytokines were quantified by ELISA.

Han et al. Foot Ankle Int. 2009 Feb;30(2):93-8.

SW reduce inflammatory signals

Decreased MMP-1, MMP-13 and IL-6 after shockwave therapy

Human diseased Achilles tendon was surgically obtained. Tenocytes were cultured for 10-14 days, then exposed to SW @ 0.17 mJ/mm². Media was collected 72h after SW exposure, and cytokines were quantified by ELISA.

Dornier *MedTech*

Han et al. Foot Ankle Int. 2009 Feb;30(2):93-8.

24

Multiple Cellular Responses to Shockwaves

Mediator	Signaling	Clinical effect	References
Erk 1/2, Akt, nitric oxide synthase	 Vasodilation Angiogenesis Anti-atherogenesis Immune-suppression 	Increased vascularityWound healingImmune regulation	Ha et al. Int J Cardiol. 2013 Oct 9;168(4):4168-77
VEGF, VEGF-R	Angiogenesis	Increased vascularity	Nishida et al. Circulation. 2004;110:3055-3061.
Extracellular ATP, Erk 1/2, MAPK	Cell divisionStem cell activation	Wound healing	Weihs et al. J Biol Chem. 2014 Sep 26;289(39):27090-104
Extracellular RNA + LL37 anti-microbial peptide	TLR3 signaling?	Wound healing	Holfeld et al. 1) J Cell Mol Med. 2017 Apr; 21(4): 791–801. 2) Inflammation. 2014 Feb;37(1):65-70
PERK, elF2a, ATF4	 ER stress pathway Cell growth/ survival 	Nerve healing	Wang et al. Int J Mol Sci. 2017 Feb 16;18(2). pii: E433
Stem cell derived factor-1 (SDF-1)	Stem cell recruitment	Increased vascularityWound healing	Aicher et al. Circulation. 2006 Dec 19;114(25):2823-30
Dornier <i>MedTech</i>			

Summary: Tissue Response to Shockwaves

ESWT for Erectile Dysfunction

SWT improves ED in STZ Diabetic Rat model

8wo Sprague Dawley rats were injected with i.p. streptozocin (STZ) 60mg/kg. Rats with fasting blood glucose >200mg/dl, were treated 4wk after with 300 SW @ 0.1 mJ/mm², 3x/week for 2 wk. Erectile function was tested 2wk after final SWT session, and the penis harvested for histology.

Qiu et al. J Sex Med. 2013 Mar;10(3):738–746.

Dornier MedTech

29

SWT increases number of endothelial cells

RECA-1 (rat endothelial cell antigen) Pha DAPI

Qiu et al. J Sex Med. 2013 Mar;10(3):738–746.

30

Dornier *MedTech*

SWT increases number of smooth muscle cells

Pha DAPI

Qiu et al. J Sex Med. 2013 Mar;10(3):738–746.

31

Qiu et al. J Sex Med. 2013 Mar;10(3):738-746.

Dornier MedTech

DM+SW

ESWT for Tendinopathy

Shockwaves promote collagen synthesis

Tenocytes were cultured from rat Achilles tendon. SW @ 0.36 mJ/mm² were delivered. Gene expression was analyzed by rtPCR, and total collagen produced in 7-days was quantified by the Sircol dye reagent.

Chao et al. Ultrasound Med Biol. 2008 May;34(5):841-52.

Shockwaves restore tendon strength after injury

Sprague-Dawley rats were injected with 250U collagenase near the osteotendinous junction of the left Achilles tendon. 200SW @ 0.16 mJ/mm² were delivered at d3. Tendons were excised and assessed 12wk after SWT (loading rate 20mm/min).

Applications of Shockwaves

Myoskeletal System

- Myofascial pain
- Tendinopathies
- Bone Pathologies
- Osteochrondritis

Sexual Medicine

- Erectile Dysfunction
- Peyronie's Disease (Pain)

Others

- Chronic Pelvic Pain
- Chronic Wounds
- Neuropathies

Dornier MedTech

ISMST Consensus: 38+8 Indications for SWT

1. Approved standard indications

- 1.1. Chronic Tendinopathies
- 1.1.1. Calcifying tendinopathy of the shoulder
- 1.1.2. Lateral epicondylopathy of the elbow (tennis elbow)
- 1.1.3. Greater trochanter pain syndrome
- 1.1.4. Patellar tendinopathy
- 1.1.5. Achilles tendinopathy
- 1.1.6. Plantar fasciitis, with or without heel spur
- 1.2. Bone Pathologies
- 1.2.1. Delayed bone healing
- 1.2.2. Bone Non-Union (pseudarthroses)
- 1.2.3. Stress fracture
- 1.2.4. Avascular bone necrosis without articular derangement
- 1.2.5. Osteochondritis Dissecans (OCD) without articular derangement
- 1.3. Skin Pathologies
- 1.3.1. Delayed or non-healing wounds
- 1.3.2. Skin ulcers
- 1.3.3. Non-circumferential burn wounds

2. Common empirically-tested clinical uses

- 2.1. Tendinopathies
- 2.1.1. Rotator cuff tendinopathy without calcification
- 2.1.2. Medial epicondylopathy of the elbow
- 2.1.3. Adductor tendinopathy syndrome
- 2.1.4. Pes-Anserinus tendinopathy syndrome
- 2.1.5. Peroneal tendinopathy
- 2.1.6. Foot and ankle tendinopathies
- 2.2. Bone Pathologies
- 2.2.1. Bone marrow edema
- 2.2.2. Osgood Schlatter disease: Apophysitis of the anterior tibial tubercle
- 2.2.3. Tibial stress syndrome (shin splint)
- 2.3. Muscle Pathologies
- 2.3.1. Myofascial Syndrome
- 2.3.2. Muscle sprain without discontinuity
- 2.4. Skin Pathologies
- 2.4.1. Cellulite

3. Exceptional indications – expert indications

- 3.1. Musculoskeletal pathologies
- 3.1.1. Osteoarthritis
- 3.1.2. Dupuytren disease
- 3.1.3. Plantar fibromatosis (Ledderhose disease)
- 3.1.4. De Quervain disease
- 3.1.5. Trigger finger
- 3.2. Neurological pathologies
- 3.2.1. Spasticity
- 3.2.2. Polyneuropathy
- 3.2.3. Carpal Tunnel Syndrome
- 3.3. Urologic pathologies
- 3.3.1. Pelvic chronic pain syndrome (abacterial prostatitis)
- 3.3.2. Erectile dysfunction
- 3.3.3. Peyronie disease
- 3.4. Others
- 3.4.1. Lymphedema

4. Experimental Indications

- 4.1. Heart Muscle Ischemia
- 4.2. Peripheral nerve lesions
- 4.3. Pathologies of the spinal cord and brain
- 4.4. Skin calcinosis
- 4.5. Periodontal disease
- 4.6. Jawbone pathologies
- 4.7. Complex Regional Pain Syndrome (CRPS)
- 4.8. Osteoporosis

https://www.shockwavetherapy.org/about-eswt/indications/

37

Basic Science of ESWT: Conclusions

- The exact mechanism is not well-defined, SW may activate cells in multiple ways.
- Multiple cell-types activated by shockwaves, including vascular endothelium, stem cells, nerve cells and immune cells, are present in every tissue.
- SW-activated cells initiate a proliferation and anti-inflammatory response
- SW may address the underlying pathology of multiple ischemic and inflammatory conditions.

Thank you!

Contact:

Pearline Teo, PhD Global Clinical Research Manager pearlineteo@dornier.com

